51 research outputs found

    Boilerplate Removal using a Neural Sequence Labeling Model

    Full text link
    The extraction of main content from web pages is an important task for numerous applications, ranging from usability aspects, like reader views for news articles in web browsers, to information retrieval or natural language processing. Existing approaches are lacking as they rely on large amounts of hand-crafted features for classification. This results in models that are tailored to a specific distribution of web pages, e.g. from a certain time frame, but lack in generalization power. We propose a neural sequence labeling model that does not rely on any hand-crafted features but takes only the HTML tags and words that appear in a web page as input. This allows us to present a browser extension which highlights the content of arbitrary web pages directly within the browser using our model. In addition, we create a new, more current dataset to show that our model is able to adapt to changes in the structure of web pages and outperform the state-of-the-art model.Comment: WWW20 Demo pape

    User Fairness in Recommender Systems

    Full text link
    Recent works in recommendation systems have focused on diversity in recommendations as an important aspect of recommendation quality. In this work we argue that the post-processing algorithms aimed at only improving diversity among recommendations lead to discrimination among the users. We introduce the notion of user fairness which has been overlooked in literature so far and propose measures to quantify it. Our experiments on two diversification algorithms show that an increase in aggregate diversity results in increased disparity among the users

    High-Performance Reachability Query Processing under Index Size Restrictions

    Full text link
    In this paper, we propose a scalable and highly efficient index structure for the reachability problem over graphs. We build on the well-known node interval labeling scheme where the set of vertices reachable from a particular node is compactly encoded as a collection of node identifier ranges. We impose an explicit bound on the size of the index and flexibly assign approximate reachability ranges to nodes of the graph such that the number of index probes to answer a query is minimized. The resulting tunable index structure generates a better range labeling if the space budget is increased, thus providing a direct control over the trade off between index size and the query processing performance. By using a fast recursive querying method in conjunction with our index structure, we show that in practice, reachability queries can be answered in the order of microseconds on an off-the-shelf computer - even for the case of massive-scale real world graphs. Our claims are supported by an extensive set of experimental results using a multitude of benchmark and real-world web-scale graph datasets.Comment: 30 page
    • …
    corecore